基于印刷輻射元的紡織復(fù)合材料天線的制備及其性能研究
[Abstract]:With the continuous progress of science and technology, composite materials have experienced a development path from small to large, from secondary to primary, from structure to function. Especially in the field of aerospace, the application of composite materials in aircraft structures is not only to reduce weight and improve specific strength, but also to make them have both mechanical properties and functional properties through reasonable design. Value. For the traditional antenna with prominent configuration, how to reduce the profile of the antenna while not destroying the mechanical properties of the body will help to improve the maneuverability and efficiency of the aircraft; and how to increase the bandwidth of the antenna on a thin dielectric substrate has become another focus of attention. In this paper, the composite antenna is fabricated by printing method, the radiation unit, the dielectric matrix and the antenna floor are formed by vacuum assisted resin transfer molding technology, and the bandwidth of the rectangular microstrip antenna is improved by slotting technology. The main contents are as follows: (1) Firstly, the dielectric properties of glass fiber antenna substrate fabricated by vacuum assisted resin transfer molding process are studied. The results show that the dielectric constant of the antenna substrate is 3.763 and the dielectric loss tangent is 0.01. The simulation results show that the return loss of the rectangular microstrip antenna is - 37.65 dB and the gain is 4.52 dB at the design frequency of 1.575 GHz. The radiation performance and impedance of the antenna pattern and Smith circle are well matched. The return loss of the slotted antenna is - 15.12 dB at the same frequency. The gain is 3.18dB, and the directivity and impedance matching meet the requirements. However, the bandwidth of slotted antenna is 132.5% larger than that of rectangular antenna, and the antenna area is reduced by 39.5%. (2) According to the size design parameters of the antenna, four kinds of rectangular copper-foil microstrip antennas, rectangular silver-foil microstrip antennas and copper-silver-foil microstrip antennas are fabricated. Slurry microstrip antenna, slotted copper foil microstrip antenna and slotted silver paste microstrip antenna. Silver paste radiation element adopts screen printing process, which has good printability, high accuracy, low cost and other characteristics. The radiation element of antenna, dielectric matrix and floor are formed by vacuum assisted resin transfer molding process, and finally through reasonable design. Four antennas were obtained by welding process. (3) The measured electromagnetic parameters of the four antennas show that the return losses of the rectangular copper foil, rectangular silver paste, slotted copper foil and slotted silver paste microstrip antennas are - 13.8 dB, - 18.9 dB, - 12.6 dB and - 16.8 dB respectively at the center frequency of 1.575 GHz. All the antennas have the greatest radiation performance in the direction of 0 degrees. Compared with the traditional copper foil material, the antenna with conductive silver paste has smaller echo loss, better impedance matching and better coincidence rate with the simulation results. (4) As an important performance of the composite antenna, the tensile and bending properties of the silver paste antenna are analyzed. The results show that the normalized tensile strength of the silver paste antenna is 9.9% higher than that of the copper foil antenna, and the normalized bending strength of the silver paste antenna is 9.9% higher than that of the copper paste antenna. The foil antenna is improved by 19.3%. The silver paste element can improve the mechanical properties of the antenna. (5) Finally, the combination of the antenna element with the dielectric surface and the tensile and bending fracture surface are observed by scanning electron microscopy. The bonding performance of the silver paste element with the substrate is better explained from the microscopic point of view. The angle indicates that the silver paste antenna has higher mechanical properties. In summary, the composite antenna has been successfully fabricated by screen printing process. The mechanical and electrical properties of the composite antenna are better than those of the copper foil antenna. The design and implementation of slotted antenna make it possible to widen the bandwidth of the microstrip antenna on the thin dielectric substrate, which further increases the bandwidth of the microstrip antenna. The combination of conductive paste radiation unit and textile provides a new idea for intelligent and multi-functional composite materials.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN820;TB33
【相似文獻】
相關(guān)期刊論文 前2條
1 霍羽;劉逢雪;徐釗;;煤礦井巷天線位置對輻射場分布的影響[J];煤炭學(xué)報;2013年04期
2 ;[J];;年期
相關(guān)會議論文 前10條
1 謝處方;;2000年天線展望[A];IEEE北京分會第一屆學(xué)術(shù)年會論文集[C];1987年
2 王致遠;倪文俊;蔣凡杰;;螺旋加載倒F天線的設(shè)計[A];2009年全國天線年會論文集(下)[C];2009年
3 李曉燕;李江波;;中波小天線介紹與應(yīng)用[A];2007第二屆全國廣播電視技術(shù)論文集2(上)[C];2007年
4 李宗謙;;天線口面的平均亮溫度[A];1995年全國微波會議論文集(下冊)[C];1995年
5 楊振超;聶在平;宗顯政;班永靈;;手機天線在整機環(huán)境下的效率分析與仿真[A];2009年全國天線年會論文集(下)[C];2009年
6 趙陽;張志軍;馮正和;李展;;全金屬無切縫腔體天線的技術(shù)研究[A];2011年全國微波毫米波會議論文集(下冊)[C];2011年
7 陳志雨;;用GTEM小室做天線測量[A];2009年全國天線年會論文集(下)[C];2009年
8 覃正;陳紹汀;;國外SAR天線的發(fā)展[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第二卷)[C];1996年
9 蔣頡;周蔚紅;何建國;;微波熱療天線的設(shè)計與優(yōu)化[A];2009年全國微波毫米波會議論文集(上冊)[C];2009年
10 張加坤;胡皓全;楊顯清;趙家升;;線天線輻射近區(qū)場強計算[A];第十四屆全國電磁兼容學(xué)術(shù)會議論文集[C];2004年
相關(guān)重要報紙文章 前6條
1 大連移動通信公司工程師 李軍;天線美化漸成趨勢[N];經(jīng)濟日報;2006年
2 ;無線語錄增益天線[N];電腦報;2005年
3 ;C網(wǎng)優(yōu)化中的天線仿真研究[N];通信產(chǎn)業(yè)報;2003年
4 羅清岳;智能型GPS導(dǎo)航天線的設(shè)計及應(yīng)用[N];電子資訊時報;2006年
5 趙如兵;解讀移動通信天線參數(shù)[N];通信產(chǎn)業(yè)報;2003年
6 記者 華凌;你想“遁形”,就在身邊放些小天線[N];科技日報;2013年
相關(guān)博士學(xué)位論文 前10條
1 劉逢雪;織物可穿戴天線及其應(yīng)用研究[D];中國礦業(yè)大學(xué);2016年
2 肖紹球;平面型可重構(gòu)天線研究[D];電子科技大學(xué);2003年
3 宗顯政;平臺與天線的一體化電磁建模及工程實踐研究[D];電子科技大學(xué);2008年
4 韓國瑞;封裝天線的電磁兼容特性研究[D];山西大學(xué);2013年
5 魏文博;可重構(gòu)天線研究[D];西安電子科技大學(xué);2008年
6 陳瑾;寬帶小型化天線及多頻帶/超寬帶印刷天線研究[D];西安電子科技大學(xué);2010年
7 楊樺;托卡馬克中離子回旋天線的相關(guān)理論研究[D];中國科學(xué)技術(shù)大學(xué);2015年
8 凌勁;混合快速算法在天線輻射和散射問題中的研究與應(yīng)用[D];西安電子科技大學(xué);2011年
9 王琪;天線的小型化技術(shù)與寬頻帶特性的研究[D];電子科技大學(xué);2004年
10 周蔚紅;時域天線在無載波脈沖探地雷達中的理論及應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王明啟;多頻微帶RFID閱讀器天線的研究與設(shè)計[D];貴州大學(xué);2015年
2 張袁;共形全息人工阻抗表面天線的研究[D];電子科技大學(xué);2015年
3 陳龍;基于復(fù)合左右手傳輸線的濾波天線研究[D];電子科技大學(xué);2015年
4 王建偉;小型化印刷天線在寬帶通信中的應(yīng)用設(shè)計[D];電子科技大學(xué);2014年
5 傅琦;高峰值功率天線和可重構(gòu)太赫茲吸收器的設(shè)計[D];電子科技大學(xué);2015年
6 王大昌;有限區(qū)域內(nèi)多個天線之間干擾預(yù)測與布局優(yōu)化研究[D];電子科技大學(xué);2015年
7 周鵬;寬帶小型化的高性能鞭天線研究[D];電子科技大學(xué);2015年
8 馬曉娜;幾種典型的小型化印刷天線的設(shè)計與研制[D];電子科技大學(xué);2014年
9 袁睿;人體中心通信可穿戴天線研究[D];電子科技大學(xué);2015年
10 杜雷剛;結(jié)構(gòu)參數(shù)對結(jié)構(gòu)功能一體化天線電性能的影響分析[D];西安電子科技大學(xué);2014年
,本文編號:2203102
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2203102.html